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Probing the non-elastic deformation of solid polymers in the pre-yield range has proved to be 
a very sensitive test of the structural response to plasticity nucleation. A work-hardening rate 
parameter, K, deduced from repeated stress relaxations was thus introduced to quantify this 
behaviour. It is shown that considerable improvement and more extensive information may be 
gained by measuring the work-hardening rate by the so-called direct method from a simple 
stress-non-elastic strain plot. A comparison is given of the two methods in the case of 
unsaturated polyester resins, together with a careful evaluation of potential sources of 
discrepancy. 

1. I n t r o d u c t i o n  
It is now generally well agreed that the non-elastic 
behaviour of solid polymers can be usefully described, 
in the absence of crazing, in terms of the nucleation 
and growth of local defects in the chain arrangement 
of the deforming polymer 1-1, 2]. These defects should 
be nucleated merely below the yield stress, during the 
pre-yield stage, as small (Somigliana) dislocation 
loops, or micro-shear zones probably not larger than 
10-100 nm, throughout the polymeric glassy phase; 
yielding would then occur, once stress and temper- 
ature conditions allow for their catastrophic growth 
and coalescence. 

The defect nucleation rate in the pre-yield stage can 
be measured by the non-elastic work-hardening rate, 
K, under the mere assumption that the sole defect 
nucleation is responsible for the increasing non-elastic 
strain, %, in the material. It has been shown in pre- 
vious papers [3, 4] that this nucleation rate, and thus 
the parameter, K, was a reliable probe to the polymer 
mesostructure (10 nm) and its time or temperature 
evolution, i.e. ageing, curing degree, or nature and 
state of a dispersed second phase. It is also a way to 
characterize and classify materials depending on their 
ability to exhibit local non-elastic, or plastic deforma- 
tion so that, recently, correlations have been found 
between K and the toughness of polymer blends [-5]. 

The method for measuring K has been given pre- 
viously [3, 4, 6]; it is based on the gradual increase in 
duration of repeated stress relaxation runs from the 
same stress value, due to the accumulating work hard- 
ening. This method might be found difficult to apply in 
some cases for several reasons. 

(i) Two samples deformed exactly at the same 
strain, %, are needed for each value of the strain: one is 
for measuring the apparent activation volume, V(ep), 
from a single stress relaxation test, and the other for 
measuring the quantity VK/M, where M is the elastic 
modulus, by the repeated relaxations test. 

(ii) The measurement gives only the value of K at a 
given ~p. Because K depends on ep as ~-1 [4], com- 
paring two different materials, for example, should 
necessitate comparing both the whole curves K(ep) all 
over the pre-yield stage, which is rather time consum- 
ing to obtain, even if measurements can now be 
computer aided. 

(iii) In the case of brittle materials, like organic 
composites for example, deformation damage (micro- 
cracks) may occur from the slight strains experienced 
during the repeated relaxations, which hinders the 
method from being applied correctly. Therefore, a new 
method for measuring K(%) has been developed 
which is merely another way to plot the 
load-elongation chart obtained from the standard 
constant (total) strain rate test, correcting only for the 
non-constant plastic strain rate. That  is, from the data 
of the stress-strain curve, era(a), plus that of the ap- 
parent activation volume, V(~), which a few samples 
are enough to establish, the whole curve K(~p) can be 
determined. Thus, this new method of measurement 
brings about a clear improvement which allows us to 
obtain both faster and better results; for a rapid prob- 
ing of materials, the correction terms (hence the need 
for V(~)) can even be skipped, so that results are still 
faster. 

It is the purpose of this paper to establish the 
method, which we will call the direct method, and to 
check it against the more conventional repeated stress 
relaxation (RSR) method. The theoretical aspects are 
first discussed, then the experimental procedure is 
developed, and the two materials tested for com- 
parison (two unsaturated polyester resins) are de- 
scribed. In order to have a valid comparison, the RSR 
method has, itself, to be reviewed for possible physical 
ageing and strain effects on K during repeated relaxa- 
tions. These corrections are introduced in Section 4, 
and the measurements of K by the two methods are 
then compared. 
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2. T h e o r y  
The basic idea of this approach is to model the stress 
needed to deform non-elastically the material as [6] 

or. = cri(ep) + ~*(T,~p) (1) 

where cra is the applied stress corresponding to the 
total strain et = ~n + ep, with eu the Hookean elastic 
part and ap the defect part of the strain, cr i is the 
internal stress built up as ap increases, and ~* is the 
so-called thermal component of stress. 

The internal stress field, cr i, grows up from ~p, i.e. 
from the defect development. Either, as in crystalline 
materials, it stems from the elastic interaction of grow- 
ing dislocation loops, or, as is more likely in amorph- 
ous materials, it originates from the back stress which 
the molecular misfits trailing behind, on the wake of 
the nucleated loop, apply on its contour [-1, 2]. Ac- 
cordingly, cri = 7/b with b the mean shear vector of 
the micro-shear zone, and 7 the energy per unit area of 
the faulted interface corresponding to the inferred bad 
molecular stackings. As the non-elastic strain, Up, in- 
creases in the pre-yield stage, shear zones should be 
nucleated into more and more compact regions of the 
polymeric glass, so that the interface energy should be 
an increasing function of ~p, "/(~p) and so should 
cri(ap). Thus the cr i variation should be merely con- 
trolled by the structure of the glassy phase, while the 
cr* variation should come from the activated growth 
of the nucleated defects, i.e. it should depend primarily 
on temperature and non-elastic strain rate, ~p. During 
the pre-yield stage, this term is at first quite small, as is 
~p, then it increases as does ~v up to yielding, at which 
+p is equal to the total strain rate +t. 

The non-elastic work-hardening rate, K, is the 
structure dependent parameter defined by 

do _ 
K - d~p t 8s lip, T 

while in a standard, constant total strain rate test, only 
the parameter K '  can be easily obtained as the 
load-elongation slope 

k e%/e< 

-- dap + ~ p  rkO~p/Z, 

following Equation 1. The strain rate derivative of ~* 
can be deduced from the knowledge of the apparent 
activation volume, V, defined [6] by 

V = kT(~ln~p~ 
\ 8c~. IT, o, 

= k T (  ~lngp (4) 

again from Equation 1. It follows from Equations 3 
and 4 that 

kT 
K'  = K + - - A  (5a) 

V 

A = (81n~p~ (5b) 
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Now, V is measured from the relaxation of the 
applied stress which follows the modified Guiu and 
Pratt  relationship [6] 

kT 

,6b, 

with t, the time, C a time constant, and M the elastic 
modulus. 

Finally we obtain K from Equations 5 and 6 

AkT ( AkT 
< : 

which shows that K can be known at any strain ~p 
from experimental determination of M, K'(ep), A(%) 
and V~xp(ep). All these quantities can be computed 
using experimental data stored on floppy disks in a 
standard constant total strain rate compression test. 

The materials investigated, the experimental pro- 
cedure and the results of measurements of K by the 
direct method are described below [-7]. 

3. Experimental determination of 
K(~p) by the direct method for two 
unsaturated polyester resins 

The polyester prepolymers consist of alternating se- 
quences of maleic anhydride associated with a diol; the 
latter is either diethylene glycol (DEG) or propylene 
glycol (PG). This prepolymer is diluted in styrene 
(31% wt/wt) and network formation occurs by radical 
copolymerization of styrene with the maleic anhydride 
double bonds. 

Curing has been achieved at room temperature with 
cobalt octoate as an accelerator and MEK  peroxide as 
a catalyst. 

There are, on average, two to three styrene unit per 
cross-link. A post-curing treatment has been applied 
to all networks. Based on previous work in our labor- 
atory, post-curing optimization is achieved by con- 
trolling network evolution from a mechanical point of 
view [3, 7]. The theory outlined above can be used for 
this control: network structure is thus probed by 
work-hardening rate, K, measurements and it is pos- 
tulated that curing efficiency is reached when K levels 
off to an upper plateau value. According to these 
results, a curing time of 1 h at 130~ was retained. 

Compression tests have been performed at room 
temperature (T  = 20 ~ and constant total strain rate 
~t = 3 x 10- 5 s-  1 using an Instron machine driven by 
a microcomputer. Compression samples were ma- 
chine turned into small cylindrical specimens (6 mm 
diameter and 11 mm long); they were mechanically 
polished to ensure parallel end sections to better than 
0.01 mm. The total strain is measured by an LVDT 
transducer rigidly attached to the fixed compression 
plate with its tip at the mobile plate. 

Three types of experimental data are stored by the 
computer: the elapsed time, t, since the start of the test, 
the force and the total strain, ~t, of the sample. From 



these data one computes: 

(a) the time derivative, 6a(t), using a least square 
routine between the applied stress and the elapsed 
time; 

(b) the elastic modulus, which is taken as the max- 
imum slope of the curve ~a(at) and is computed from 
M = 6.( t ) / i t ,  where ~t is the imposed constant strain 
rate; 

(c) the non-elastic strain, %(0, is obtained at any 
time from the data at(t) and % ( 0  using ep = a t -  
(cra -c%)/M, where % is a stress constant due to 
mechanical looseness which tightens early during the 
test; Cyo is taken at the intersection of the at-axis and 
the preceding M-tangent to the era(at) curve; 

(d) the plastic strain rate, ~p(t) ,  is computed from 
6,(t), using ip = kt - ( 6 a / m ) ;  

(e) K'(%) is computed from K' = 6a/ip; 
(f) the curve ~p(ap) is approximated by a poly- 

nomial which allows us to compute its strain derivat- 
ive, i.e. A ( a p )  = ( l / ~ p ) ( d ~ ; p / d a p ) ;  

(g) finally the c u r v e  Vexp(ap) is obtained with five 
samples tested for stress relaxation, each at a given 
point (or,, %) of the curve %(%) with ap in the range 

5 x 10-4-25 x 10-4: % = 5 x 10 -4 ,  10 -3, 1.5 x 10-31 

2 x 10 - 3 ,  and 2.5 x 10 - 3  

Fig. 1 shows the K' and K values obtained by this 
procedure for resins PG and DEG, respectively, as 
functions of ap; Table I gives intermediate parameters 
which have been used and the values of K obtained for 
these plastic strains. 

4. M e a s u r e m e n t  of K b y t h e  RSR method 
4.1. RSR ,method reviewed 
Let us consider a repeated stress relaxation run per- 
formed from a point (Cra(l> , a~p 1)) of the %(%) curve, in a 
constant total strain rate test. The duration, At,, of the 
nth run needed to relax a given stress amount Acy 0 is 
given by an equation like Equation 6a 

kT 
- A ~ o  _ V~pln(1  At,'] + (8) 

with the time constant Cn, proportional to 1/&pn, i, the 
plastic strain rate at the start of the run [6]. The 
experimental activation volume Vexp relates to the 
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Figure l K'(~p) values for the two unsaturated polyester resins, PG and DEG. Work-hardening rate, K, values as obtained from K'  by the 
direct method are also shown (m) K'(PG), (II,) K(PG), (-) K'(DEG),  (m) K(DEG). 

T A B LE I K'  and K values for the PG and DEG resins and intermediate mechanical parameters: M (elastic compressive modulus). V~x p 
(activation volume) 

0 .5x10 -3 1 .0x l0  3 1.5x10 -3 2.0x10 3 2 .5x10-3  

PG DEG PG DEG PG DEG PG DEG PG DEG 

M(MPa) 
V~p(nm 3) 
K'(MPa)  
K(MPa) 
direct meth. 
K(MPa) 
RSR 

3100 2500 3100 2500 3100 2500 3100 2500 3100 2500 
3.900 3.050 2.590 2.030 1.900 

21600 10000 12200 5450 8510 3860 6410 3140 5430 2580 
13000 5550 7750 3375 5730 2530 4230 2045 3830 1770 

5100 3025 2500 2250 1975 
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stress derivative ( ~ l n ~ ; p / ~ U a )  R in relaxation condi- 
tions, taken at its starting time when c a = teal J; for the 
sake of simplicity, its value is assumed to be the same 
whatever the number, n, of the run, and is measured on 
a distinct sample by a single stress relaxation test from 
the same point ((3"(1), (1)~ ap ~, as in Section 3(g). Because 
Aoo and V~ v are independent of n, Equation 8 shows 
that At , /C, ,  i.e. ~v,,~At, is independent of n as well, 
which means that At,+~ is related to At, by 

A/;n+ 1 = Atn.(~.pn.i/~pn+l,i ) (9) 

From Equation 1, ~ is a function of c~* = % - o~, 
and T. Therefore, the strain rate ratio can be evaluated 
from a limited expansion of In ip in terms of or*, for a 
thermal component increment Ao* = - Acq between 
the two successive initial strain rates, and correspond- 
ing to the plastic strain increment gained during one 
run 

A~;p = A~o/M (lOa) 

Acy* = -- A(~ i - K . . A o o / M  (lOb) 

So that, using Equations 4 and 6 finally [6] 

At,+l - exp - -  (11) 
M At. k T + K,  

where K,  is the work-hardening rate during the nth 
run. 

Let us first neglect any physical ageing during re- 
laxation runs. Then K,  decreases from run to run 
because of the increasing plastic strain and because it 
has been shown elsewhere that K varies as 1/~p [4, 7]. 
Therefore, while assuming, for the sake of simplicity, 
that K remains constant during one run, we change its 
value at each new run. For the value of K,,  we take the 
value of K at the terminal strain, at the end of the nth 
run (i.e. at time t,), i.e. at ev = ~(pl) _~_ nAoo/M" Hence 
denoting the K values without physical ageing, K(0), 
the recurring relationship between K,(0) and K,_ z(0) 
is 

obtained. It can be approximated by polynomial and 
extrapolated to n = 0, so that finally the work-harden- 
ing rate at zero relaxation strain, K = Ko(0) can be 
obtained and compared to  the K value measured by 

(1) (see Sec- the direct method at the same strain ~p 
tion 5). 

Now the recovery of oi by physical ageing during 
the repeated runs, an additional cause of a decrease in 
K along the test, can be introduced. Let us choose a 
stress recovery functionf(z) ,  z = t / t  o with t the elap- 
sed time, so that the internal stress is written as 

t C~i(s t) = cy~ z - (13) 
to 

with f ( 0 ) =  1, o ~ is the internal stress at the origin 
time. An usual ageing function is, for example 

f ( z )  = e x p ( -  z6) (14) 

where [3 is a constant ranging typically between one- 
third (Andrade law) and two-thirds, depending on the 
recovery phenomena. With this time dependence, K 
may be written 

K-(Ep, t ) - - - - (  ~(Yi ~ dcY~ ~ap/t = K(O)f(z), K(O) - dEp 

(15) 

while during a stress relaxation run, the total strain 
derivative of c L may be written as 

do i 
K"(gp, t) - 

d8p 

(16) 

so that for the nth run of average strain rate ip 
= Aoo/MAt . ,  

K~(%, t) K,(0) cr~ At. 
M - ~ f ( z )  + Aoo to i f (z )  (17) 

(1) + n M~ (12a) K.(0)  = K . _ ~ ( 0 )  ~1~ + (n - 1) ~p 

from which K,(0) can be evaluated as soon as Ka (0) is 
known. KI(0 ) is known in turn from At1 and At2,  

following Equation 11 

K 1 (0) kTln (At2/Atl)  
- ( l~b)  

M V~xpAC% - kTln(At2 /At l )  

Thus from the two input data (Ate,At2) or 
(Atl, KI(0)) all the other At, s .can be computed to- 
gether with the K,(0)s using Equations 11 and 12. The 
fit with experimental values At1, At 2 . . . . .  A t  . . . . .  for 
each given starting strain ~(pl) can be optimised (see 
Section 4.2) so that the best curve of K,(0) versus n is 

where i f ( z )  is the z-derivative o f f ( z ) ,  and K,(0) is 
strain dependent as given still by Equation 12, as is 
g~ (see below). 

In Equation 17, time is flowing during the nth re- 
laxation run. As in Equation 12, for the sake of simpli- 
city, we take K,(0) as a constant over the run and 
equal to its value at the run end, i.e. at time t, and 
strain S(p 1) + nAcso/M. The new recurring relationship 
between At.+x and At, is obtained by substituting 
Equations 16 and 17 into Equation 11, with K"  in- 
stead of K, hence 
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Vexp Acro In 
I Kn(O) 

M 
~i  ~ At,. _ 

Z = tn/tO; tn ~ ~ At i i=1 

(18) 



where we have neglected in t, the quite short reloading 
times before each new run, and where we have made 
the simplifying assumption �9 = 0 (i.e. no ageing) in the 
denominator  in which K n comes as a corrective term 
between Vex p and V. By doing this, we slightly force the 
ageing decrease of K as expressed in the numerator,  
only through a corrective term; because the ageing 
function is itself only a crude approximation,  this 
assumption is acceptable. 

In Equation 18 cy ~ is strain dependent. Recalling 
that its strain derivative, K(0), varies as  1 /Sp [4, 7], cyi ~ 
varies like In %. Taking again cy~ equal to its terminal 
value at the nth run end, a recurring relationship 
similar to Equation 12 is obtained 

durations At3, A t 4 , . . .  A t , , . . .  are computed so that 
the quantity I, 

(1) A t 2 , A t l )  = ~-~(At~omp __ AtneXp)2 (21) 1([3, to, I~pl , 
?l 

can be calculated. Another value At 2 is then tried, 
which gives another value for I, and the process is 
repeated until I reaches some minimum value I o. 

(b) Another At1 value is taken, and the same pro- 
cess leads to another minimum Io, and so on until 
the minimum minimorum for I is reached, 
1m(13, to,  8(11 ), A t2 ,  Atx) ,  which determines the best pre- 
dicted values At 1 , A t z , . . . A t . , . . .  either by choice 

, . .  = i,.-1 + K . - I ( O )  + - ) Jr- / ~ m - )  E l  I) -~- (F/ - 1 ) ~ -  ( 1 9 )  

from which or9 can be evaluated as soon as cr ~ is 1,n i, 1 

known. N o w  CYll can be approximated as the applied 
stress from the stress, o E, at which the curve %(g) 
deviates from linearity (where the above M straight 
line is tangent to this curve) 

cy ~ "( lh (20) i ,1  ---- O ' a / E p  J - -  CYE 

By the same procedure as above, using Equations 
18 and 12a, b, 19 and 20, the run durations 
A t l ,  A t 2 ,  . . . , A t , ,  . . . can be computed from the two 
input data (At,,  At2), and after fitting with the experi- 
mental durations, the zero relaxation strain K value, 
Ko(0 ) = K, can be deduced, provided that the two 
ageing parameters which have been introduced, 13 and 
t o , be determined. The derivation of these parameters, 
and the K values obtained at five strains alp 1) are given 
below. 

4.2. Ageing parameter determination and K 
values by the RSR method 

The fitting exercise has been performed for one of the 
two preceding unsaturated polyester resins (the D E G  
resin), which was tested in RSR from five strain values 
~(1) = 5 x  10-4, 10 -3, 1.5 x 10 -3, 2 x 1 0  -3, and 2.5 pl 

x 10 3. Here the relaxed amount  of stress is Acy o 
= 0.71 MPa  and the elastic modulus is M 
= 2500 MPa,  so that the plastic strain gained in each 

relaxation run, A o o / M  = 2.84 x 10 4 is by no way 
negligible as compared to alp ~) values. The five values 

-0(1) are V~xpl % ) the ones already measured in Section 3(g) 
and given in Table I. 

The fit is done on the five experimental At, versus n 
curves, using the following procedure implemented in 
a PC computer. 

(a) The process starts from a given value of 13 (be- 
tween 0.25 and 1) and of t o (between 2000 and 
82000 s). For the plastic strain ~(p~), we take a given 
value At 1 (near the experimental one); we then deter- 
mine a At 2 value, or equivalently a ratio At2/At l ,  i.e. a 
K 1 (0) value, which gives the best fit with experiment. 
That  is, starting from some At 2 value, the others 

for A t  2, At1, or by computat ion for At 3, At 4, 
�9 . . At . . . . .  (we make no claim for uniqueness). 

(c) Another strain value, alp 1) is chosen and we com- 
pute the quantity S, such that 

5 

s ( l ,  to) = T, /m(13, tO, ~p,~) ")  
i = 1  

(d) The surface S([3, to) is investigated in varying t o 
with fixed [3, and vice versa. Fig. 2 shows how this 
surface looks�9 The minimum of S is found for the 
(13, to) values given by 13 = 0.65; t o = 50000 s. Fig. 3 
shows the fit of the At, s calculated from these para- 
meters, for each strain value ~pi(1), with the correspond- 
ing experimental values, and Fig. 4 shows the five 
corresponding Kiln ) versus n curves, from which the 
K values for each strain value ~(~) ~p, are extrapolated; 
these values are reported in Table I. 

It is worthy of note that the value found for to, 
about 14 h, means any % recovery by physical ageing 
during <the relaxation runs is quite negligible, because 
durations are always much shorter than 
to(At . < 3 0 0 s  so that t , = Z A t , < 2 0 0 0 s ,  i.e. 
t, < to/25 ). Therefore, the main cause of decrease of K 

~ _ ]  ~ 
~.~o ~o  
~ o  

Figure 2 Surface S(]3, to) as a function of b and to; the part of 
the surface corresponding to t oc[2000s ,  26000s]  and 
13 e [0.25, 0.35] is beyond the minimum and is not shown here for the 
sake of clarity. Arrows show the isoparameter lines 13 = 0.65 and 
t o = 50 000 s which define the minimum locus (white cross). 
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Figure 3 Measured  values  of At ,  ~~ versus n (number  of the relaxation).  The line shows the calcula ted At2  "~ versus n. 
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during stress relaxation runs, and of (At,+l/At,) as 
well, is the plastic strain increment gained at each run. 

5. C o m p a r i s o n  b e t w e e n  t h e  t w o  
m e t h o d s  

The agreement between the work-hardening rate, K, 
values measured either by the direct method, or by 
RSR is very good: Table I shows an agreement within 
10% only. 

This agreement has to be appreciated in compari- 
son with two causes of uncertainties. The first is the 
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experimental scatter of the activation volume values, 
V~xv, which is certainly of order of 5%-10%.  Nu- 
merical simulation shows that a 10% decrease in Vex v 
in K from the direct method, and ~i 12%-16% increase 
in K from the RSR depending on the strain ~(1! These v p ,  1 �9 

changes lead to largely overlapping K values, the 
direct method spread being narrower and enclosed in 
the RSR spread. 

The second cause of error is the crude approxima- 
tion used in accounting for physical ageing recovery of 
internal stresses, %. The parameters !3 and to of the 
chosen ageing function should depend on the level of 



applied stress, i.e. on the strain ~c1! at the start of the v p ,  l 

ith RSR run [8]; accordingly, the coordinates [[3, to] 
of the minimum locus of the function /m(13, tO, ~(1!t p ,  17 

should be found for each given ~va,] value instead of the 
one of the S([3, to) function in Section 4(c) above. 
Although this procedure would be unavoidable when 
investigating ageing processes for themselves, it is less 
necessary here because of the range of small investig- 
ated strains (smaller than 25 • 10 -4) and because we 
merely want to check the validation of the direct 
method against the RSR one; therefore, in order to 
save computer time, we choose to perform only the 
4(c) procedure. The computed minimum coordinates 
[[3, to] as given above are thus only some averaged 
ageing parameters in the investigated strain range; the 
good experimental fits obtained on At, versus n curves 
in Fig. 3 show that they are nevertheless acceptable 
values. 

Despite of the approximation used for physical 
ageing, our analysis shows that physical ageing ac- 
counts about as much as strain effects upon K, for the 
correction to be brought in the K measurement by 
RSR. This is shown in Table II in which for each strain 
value ~p,,~(q are displayed for the DEG resin: 

(i) the K value obtained from RSR without any 
correction, following the standard method given in 
previous papers [3, 4, 6]; 

(ii) the K value after correcting only for the strain 
dependence of K during an RSR run; 

(iii) the K value after correcting for both the ageing 
and the strain effects. 

Consistent with the above discussion, this table 
cannot give indications of the varying amounts the 
ageing contributes to the correction term depending 
on the level of applied stress. 

6. Conclusions 
This study establishes the validity of the new method 
of measurement of the non-elastic work-hardening 
rate, K, the so-called direct method. While being con- 
sistent with the RSR method, this new method has 
several advantages over the latter: 

(i) it is much less time-consuming to set out; 
(ii) it gives the whole curve K(%) in one experi- 

ment, thus allowing an easier comparison between 
various temperature behaviours of the same material, 
or various materials at the same temperature; 

(iii) it is much less strain-damaging, allowing thus 
brittle materials like organic composites to be invest- 
igated; 

(iv) it gives more precise measurements of K, be- 
cause it is less sensitive to scatter in Vex p values as 
shown in the above section. 

The measurements can be made even faster when 
only K '  values are needed, avoiding the need of cor- 

T A B L E  II Different K values obtained for the DEG resin at 
different plastic strains ap~tl'. Kt ,  standard procedure without any 
correction; Kz, after correcting only for the K(gp) dependence 
during an RSR run; Ka, after correcting both the ageing and strain 
effect 

ap Ka(MPa) K2(MPa ) K3(MPa ) 

0.5 x 10 3 1560 3500 5100 
1.0 x 10 -3 1280 2275 3025 
1.5 x 10 -3 1390 2025 2500 
2.0 x 10 -3 1220 1700 2250 
2.5 x 10 -3 1110 1550 1975 

rection from K'  to K (Equation 7), i.e; the experi- 
mental determination of Vexp(%) and A(%). This is the 
case either with some materials like epoxy resins or 
epoxy composites in which it happens that the correc- 
tion is quite small [9], or when there is only the need 
of classifying materials depending on their ability to 
deform plastically: most of the time, K'(%) gives the 
same classification as does K(8p) .  AS an example, 
Fig. 1 shows that PG resin is harder to deform non- 
elastically than DEG resin (as is expected from their 
molecular structure [7]) because K is always higher in 
that case; but this conclusion is already seen from K '  
data which fall in the same order. The same behaviour 
has been observed with a number of other polymers in 
our laboratory. 
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